Обучающая выборка примеров Экземпляр


Страна-изготовитель

Размер

Старая модель

Позитивный/ негативный



Oldsmobile Cutlass

США

Большой

Нет

Негативный

BMW 31 6

Германия

Малый

Нет

Позитивный

Thunderbird Raodster

США

Малый

Да

Негативный

VW Cabriolet

Германия

Малый

Нет

Позитивный

Rolls Royce Corniche

Великобритания

Большой

Да

Негативный

Chevrolet Bel Air

США

Малый

Да

Негативный

Предположим, что концепт, которому мы хотим обучить программу, это Немецкий автомобиль. Тогда позитивными экземплярами для этого концепта будут BMW 316 и VW Cabriolet, а остальные— негативными. Если же целевой концепт— Американский автомобиль старой марки, то позитивными экземплярами будут Thunderbird Raodster и Chevrolet Bel Air, а остальные — негативными.

Очень существенно предъявлять программе и позитивные, и негативные экземпляры. В первой из рассмотренных выше задач и BMW 316, и VW Cabriolet являются малыми автомобилями, поэтому если программе не представить в качестве негативного экземпляра Chevrolet Bel Air, то она может сделать вывод, что концепт Немецкий автомобиль совпадает с концептом Малый автомобиль. Аналогично, если во второй задаче не будет представлен негативный экземпляр Oldsmobile Cutlass, то программа может посчитать концепт Американский автомобиль старой марки совпадающим с более общим концептом Американский автомобиль.

С формальной точки зрения любое множество данных, в котором выделены положительные и отрицательные экземпляры, можно считать обучающей выборкой для индуктивной программы обучения. В обучающей выборке также нужно специфицировать некоторый набор атрибутов, имеющих отношение к обучаемым концептам, а запись каждого экземпляра должна содержать значения этих атрибутов. В табл. 20.1 представлены значения атрибутов обучающей выборки для концепта Немецкий автомобиль.

Другая задача обучения получила наименование обобщение дескрипторов (descriptive generalization). Формулируется задача следующим образом: программе обучения предъявляется набор экземпляров некоторого класса объектов (т.е. представляющих некоторый концепт), а программа должна сформировать описание, которое позволит идентифицировать (распознавать) любые объекты этого класса. Пусть, например, обучающая выборка имеет вид

{Cadillac Seville, Oldsmobile Cutlass, Lincoln Continental},

причем каждый экземпляр выборки имеет атрибуты размер, уровень комфорта и расход топлива. Тогда в результате выполнения задачи обобщения дескрипторов программа сформирует описание, представляющее набор значений дескрипторов, характерный для данного класса объектов:

{большой, комфортабельный, прожорливый}.

Отличие между задачами обучение концептам и обобщение дескрипторов состоит в следующем:

  • задача обучения концептам предполагает включение в обучающую выборку как позитивных, так и негативных экземпляров некоторого заранее заданного набора концептов, а в процессе выполнения задачи будет сформировано правило, позволяющее затем программе распознавать ранее неизвестные экземпляры концепта;
  • задача обобщения дескрипторов предполагает включение в обучающую выборку только экземпляров определенного класса, а в процессе выполнения задачи создается наиболее компактный вариант описания из всех, которые подходят к каждому из предъявленных экземпляров.
Обе задачи относятся к классу методик, который мы назвали супервизорным обучением, поскольку в распоряжении программы имеется и специально подготовленная обучающая выборка, и пространство атрибутов.

В следующем разделе мы рассмотрим две программы обучения, которые разработаны в связи с созданием экспертной системы DENDRAL. Первый вариант реализации программы обучения нельзя отнести ни к одной из перечисленных выше категорий, но второй вариант использовал методику, которую мы сейчас можем отнести к категории "индуктивное обучение". В оригинальном описании программы авторы назвали ее version space (пространство версий). Постановка задачи очень напоминает обучение концептам, поскольку предусматривает включение в обучающую выборку позитивных и негативных экземпляров концепта.

Интересно сравнить оба варианта системы и выяснить, как знания, специфичные для определенной предметной области (в данном случае, химии), могут быть использованы алгоритмом обучения, независящим от предметной области.

В разделе 20.3 описана современная программа индуктивного обучения, на примере которой будет продемонстрировано, как формируются правила для экспертных систем. В разделе 20.4 мы затронем вопрос настройки отдельных правил и набора связанных правил.



Содержание раздела